364. Physical Properties and Chemical Constitution. Part XVIII. Three-membered and Four-membered Carbon Rings.

By George H. Jeffery and Arthur I. Vogel.

New measurements have been made of the refractivities at 20° and the parachors of a number of cyclopropane and cyclobutane compounds, largely esters of cyclopropane- and cyclo-butane-carboxylic and -1: l-dicarboxylic acids. The contributions of the three- and fourmembered carbon rings have been computed from the relationship :

The necessary physical data for H and the reference compounds are given in the earlier papers of this series. The results are :

	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{2}{ }^{0}{ }^{\circ}$.
Three-carbon ring	$12 \cdot 3$	$0 \cdot 592$	$0 \cdot 614$	$0 \cdot 656$	$0 \cdot 646$	-4.72
Four-carbon ring	$10 \cdot 0$	$0 \cdot 303$	$0 \cdot 317$	$0 \cdot 332$	$0 \cdot 322$	-4.67

The new constants differ appreciably from those previously accepted.
The early attempts to determine the contribution to the refractivity of the three- and four-membered carbon rings cannot now be regarded as satisfactory for the following reasons : (1) The selection of compounds included many containing dicyclic structures. (2) The calculations were based upon erroneous values for the CH_{2} constants (compare Vogel, Part IX, $J ., 1946,133$). The most comprehensive data are due to Ostling ($J ., 1912,101,468$), whose R_{D} values for the cyclopropane and cyclobutane rings were 0.71 and $0 \cdot 48$, respectively (for a detailed review, see Eisenlohr, "Spektrochemie organischer Verbindungen, Molekularrefraktion und -dispersion "', Ferdinand Enke, 1912, 89-91, 134-141). The parachor contribution of the three-membered ring is based upon data on 9 compounds of very varied type which include ethylene oxide and epichlorohydrin and upon a CH_{2} value of $39 \cdot 0$ (compare Vogel, Part IX, who found 40.0) ; the extreme values were 12.9 and 20.2 and the mean was 16.7 (Sugden and Wilkins, $J ., 1927,240$). The constant of the four-membered ring was computed from the results upon ethyl 1-cyanocyclobutane-1-carboxylate, ethyl cyclobutane-1: 1-dicarboxylate, and ethyl cyclobutanecarboxylate and was given as $11 \cdot 6$ (Sugden and Wilkins, J., 1927, 141).

We have determined the parachors and refractivities of 10 simple cyclopropane compounds (largely esters of cyclopropane-carboxylic and 1:1-dicarboxylic acids) and have computed the contributions of the three-carbon ring from the relationship given above ($n=1$). The necessary experimental data were taken from earlier papers of this series $(2 \mathrm{H}$ from Part IX, alkyl n-butyrates and alkyl ethylmalonates from Part XIII, this vol., p. 624 ; the data for n-butyric acid are given in Part XX, ibid., p. 1814). The results are summarised in Table I; the experimental data for dimethyl cyclopropane-1 : 1-dicarboxylate were taken from Part I (J, , 1934, 340). The slight (and often negative) difference between R_{F} and R_{G}, is noteworthy; it is hoped to repeat

Table I.
Values for the three-carbon ring from cyclopropane compounds.

	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	$R_{\mathbf{F}}$.	$R_{G^{\prime}}$.	$M n^{20}$.
cycloPropanecarboxylic acid.	$14 \cdot 0$	$0 \cdot 59$	$0 \cdot 61$	$0 \cdot 65$	$0 \cdot 66$	$-4 \cdot 44$
cycloPropyl methyl ketone	$13 \cdot 3$	$0 \cdot 69$	$0 \cdot 72$	$0 \cdot 78$	$0 \cdot 78$	$-5 \cdot 00$
Me cyclopropanecarboxylate.	$13 \cdot 4$	$0 \cdot 59$	0.61	$0 \cdot 65$	$0 \cdot 64$	-4.78
Et cyclopropanecarboxylate	$12 \cdot 6$	$0 \cdot 54$	$0 \cdot 60$	$0 \cdot 60$	$0 \cdot 60$	$-4 \cdot 67$
Pr^{n} cyclopropanecarboxylate.	$12 \cdot 4$	$0 \cdot 61$	$0 \cdot 62$	$0 \cdot 66$	$0 \cdot 66$	-4.59
Bu^{n} cyclopropanecarboxylate	$12 \cdot 0$	$0 \cdot 61$	$0 \cdot 63$	0.67	0.66	-4.81
Am ${ }^{\text {n }}$ cyclopropanecarboxylate	11.3	$0 \cdot 49$	$0 \cdot 52$	0.56	0.55	-4.85
Me_{2} cyclopropane-1 : 1-dicarboxylate	$12 \cdot 3$	$0 \cdot 63$	0.63	$0 \cdot 68$	0.65	-4.46
Et_{2} cyclopropane-1: 1-dicarboxylate	11.2	0.58	$0 \cdot 59$	0.65	0.61	-4.91
$\mathrm{Pr}^{n}{ }_{2}$ cyclopropane-1: 1-dicarboxylate	$10 \cdot 5$	$0 \cdot 45$ *	0.44*	0.51 *	0.48*	-4.73
Mean (excluding *) $>\ldots \ldots$.	$12 \cdot 3$	$0 \cdot 592$	$0 \cdot 614$	0.656	$0 \cdot 646$	$-4 \cdot 72$
	$12 \cdot 3$	0.578	0.597	0.641	$0 \cdot 629$	$-4 \cdot 73$

the measurements for n_{F} and $n_{\mathrm{G}^{\prime}}$, with the new Hilger-Chance refractometer to establish whether the differences are due to experimental error in the measurement of the faint G^{\prime} line or whether these are characteristic of cyclopropane compounds. It will be noted that two values of the mean
constants are given in the table; the first set of figures, which excludes the apparently low results for di-n-propyl cyclopropane-1: 1-dicarboxylate, is considered to be more trustworthy.

The contributions of the four-membered carbon ring have been similarly calculated from new measurements upon esters of cyclobutane-carboxylic and -1:1-dicarboxylic acids and upon the first acid itself; the reference data for alkyl n-valerates and n-propylmalonates are given in Part XIII and for n-valeric acid in Part XX (locc. cit.). Precision measurements with the Hilger-Chance refractometer must decide whether the apparently anomalous values for $R_{G^{\prime}}$, are real or are due to experimental error. The results are collected in Table II.

Table II.
Values for the four-carbon ring from cyclobutane compounds.

	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.	$M n^{20}{ }^{\circ}$.
cycloButanecarboxylic acid	$11 \cdot 1$	$0 \cdot 36$	$0 \cdot 37$	$0 \cdot 38$	$0 \cdot 37$	$-4 \cdot 40$
Me cyclobutanecarboxylate	$10 \cdot 0$	$0 \cdot 31$	$0 \cdot 33$	$0 \cdot 33$	$0 \cdot 32$	$-4 \cdot 63$
Et cyclobutanecarboxylate	$10 \cdot 2$	$0 \cdot 29$	$0 \cdot 31$	$0 \cdot 32$	$0 \cdot 32$	$-4 \cdot 68$
Pr^{n} cyclobutanecarboxylate	$10 \cdot 0$	$0 \cdot 32$	$0 \cdot 35$	$0 \cdot 34$	$0 \cdot 35$	-4.78
Bu^{n} cyclobutanecarboxylate	$10 \cdot 3$	$0 \cdot 36$	$0 \cdot 36$	$0 \cdot 38$	$0 \cdot 38$	$-4 \cdot 72$
Am ${ }^{n}$ cyclobutanecarboxylate.	$9 \cdot 9$	$0 \cdot 26$	$0 \cdot 29$	$0 \cdot 29$	$0 \cdot 28$	$-4 \cdot 63$
Me_{2} cyclobutane-1 : 1-dicarboxylate	$10 \cdot 2$	$0 \cdot 32$	$0 \cdot 34$	$0 \cdot 37$	$0 \cdot 34$	-4.48
Et_{2} cyclobutane-1: I-dicarboxylate.	$9 \cdot 5$	$0 \cdot 26$	$0 \cdot 26$	$0 \cdot 29$	$0 \cdot 28$	$-4 \cdot 83$
$\mathrm{Pr}^{\mathbf{n}} 2$ cyclobutane-1 : 1 -dicarboxylate	$9 \cdot 7$	$0 \cdot 31$	$0 \cdot 31$	$0 \cdot 35$	$0 \cdot 34$	-4.82
$\mathrm{Bu}^{2} 2$ cyclobutane-1: 1-dicarboxylate	$9 \cdot 2$	$0 \cdot 24$	$0 \cdot 25$	$0 \cdot 27$	$0 \cdot 24$	$-4 \cdot 71$
Mean \triangle..........................	$10 \cdot 0$	$0 \cdot 303$	$0 \cdot 317$	$0 \cdot 332$	$0 \cdot 322$	$-4 \cdot 67$

Experimental.

Physical Measurements.-Full details applying to this and the subsequent papers of this series are given in Part VII ($J ., 1943,18$). Surface tensions were measured by the method of capillary rise, and only the values for $H(=h-0.24 \mathrm{~mm}$.) are given. The constants for the various apparatus are: $A 1 \cdot 8725, B 2 \cdot 3449, C 2 \cdot 3740, D 2 \cdot 4696, E 2 \cdot 3290, F 2 \cdot 3282$. Unless otherwise stated, all b.p.s are corrected. Measurements of the refractive indices were made at $20^{\circ} \pm 0.05^{\circ}$ on a Zeiss Pulfrich refractometer; with some compounds the G^{\prime} line was so faint that setting of the crosswires was less accurate than for the C and F lines.

Previous Work.-The larger proportion of the measurements described in this and succeeding papers of this series are new. The constants deduced will in all cases be based upon the measurements from this laboratory. In order to economise space, no reference will be made (save in exceptional circumstances) to previous work since this can be found in I.C.T., Landolt-Börnstein " Tabellen ", or the original literature.

Preparation of Pure Compounds.-cycloPropyl methyl ketone. The Eastman-Kodak product was dried $\left(\mathrm{CaSO}_{4}\right)$ and distilled through a Widmer column in an all-glass apparatus. A middle fraction, b. p. $111^{\circ} / 757 \mathrm{~mm}$. (semicarbazone, m. p. 117°), was used for the physical measurements.
cycloPropanecarboxylic acid. Decomposition of cyclopropane-1 : 1 -dicarboxylic acid, m. p. 136-137 ${ }^{\circ}$, by heating at 160° until evolution of carbon dioxide ceased yielded crude cyclopropanecarboxylic acid, b. p. $185-195^{\circ}$. The physical properties of the liquid were anomalous owing to the presence of a considerable quantity of γ-butyrolactone (Perkin, $J_{0}, 1885,47,815$; Bone and Perkin, $J_{.}, 1895,67,117$); a middle fraction, b. p. 188°, had $d_{4}^{20^{\circ}}{ }^{\circ} 1 \cdot 1148, n_{\mathrm{D}}^{20^{\circ}} 1.4395$. Upon dissolving the crude acid in dilute sodium carbonate solution, extracting with ether to remove the butyrolactone, acidifying with dilute sulphuric acid at 0°, and extracting with ether, fairly pure cyclopropanecarboxylic acid, b. p. 184-185 ${ }^{\circ}$, was obtained in poor yield : this had ${d_{40}^{20}}^{20^{\circ}} 1 \cdot 0891, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4376$ (Bruylants, Bull. Soc. chim. Belg., 1929, 38, 133 , gives $d_{40^{20}}^{20^{\circ}} 1 \cdot 0885, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 43901$ for the acid presumably prepared by hydrolysis of cyclopropyl cyanide).

The most convenient method for the preparation of the pure acid in quantity was the oxidation of the readily available cyclopropyl methyl ketone (compare Org. Synth., 1944, 24, 36). In a 3-1. three-necked flask, equipped with a dropping funnel, mechanical stirrer, and thermometer, was placed a solution of 165 g . of sodium hydroxide in 1400 ml . of water, cooled to $0-2^{\circ}$, and 240 g . of A.R. bromine were added with stirring at such a rate that the temperature did not rise above 10°. The sodium hypobromite solution was cooled to 0°; redistilled cyclopropyl methyl ketone, b. p. $110 \cdot 5-111 \cdot 5^{\circ} / 757 \mathrm{~mm}$., was added with stirring so that the temperature did not rise above 10°. The ice-bath was then removed, and the stirring continued for a further 2 hours. The mixture was steam-distilled to remove the bromoform ($105-115 \mathrm{~g}$.; a little solid carbon tetrabromide may separate in the condenser). The liquid was cooled in ice, acidified to Congo-red with concentrated hydrochloric acid, a little sodium hydrogen sulphite added to remove the very pale yellow colour, and the acid isolated by saturation with salt and extraction with ether ($4 \times 300 \mathrm{ml}$.). Removal of the solvent and distillation under reduced pressure yielded 36 g . of pure cyclopropanecarboxylic acid, b. p. $97^{\circ} / 27 \mathrm{~mm}$., m. p. $17-17 \cdot 5^{\circ}$. Slight decomposition occurs upon distillation at atmospheric pressure : b. p. $179-180^{\circ}, \mathrm{m}$. p. $15 \cdot 5-16 \cdot 5^{\circ}$.

Methyl cyclopropanecarboxylate. An all-glass apparatus, provided with a reflux condenser and dropping funnel, was charged with 100 g . of redistilled thionyl chloride and 52 g . of pure cyclopropanecarboxylic acid were slowly added. The mixture was refluxed for 30 minutes and then distilled through an all-glass Dufton column; 53 g . of the acid chloride, b. p. $119-119.5^{\circ} / 763 \mathrm{~mm}$., were collected.
10.5 G . of pure anhydrous methyl alcohol were placed in an all-glass apparatus (50 ml . round-bottomed flask fitted with an adapter carrying a condenser and a dropping funnel equipped with guard tubes), cooled in ice, and 33 g . of the acid chloride added during 30 minutes. The mixture was kept at room
temperature for 5 hours, poured into water, the ester separated, washed successively with saturated sodium hydrogen carbonate solution and water, dried (CaSO_{4}), and distilled. The yield of ester, b. p. $117 \cdot 5^{\circ} / 761 \mathrm{~mm}$., was 11 g .

Ethyl cyclopropanecarboxylate. $10 \cdot 1 \mathrm{G}$. of absolute ethyl alcohol and 22 g . of the acid chloride, after standing at room temperature for 90 minutes, gave 13 g . of the ester, b. p. $133^{\circ} / 763 \mathrm{~mm}$.
n -Propyl cyclopropanecarboxylate. $13 \cdot 2 \mathrm{G}$. of absolute n-propyl alcohol and 22 g . of the acid chloride, after standing at room temperature for 5 hours, afforded 13 g . of the ester, b. p. $155^{\circ} / 766 \mathrm{~mm}$. (Found : $\mathrm{C}, 65 \cdot 8 ; \mathrm{H}, 9 \cdot 2 . \quad \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 65 \cdot 6 ; \mathrm{H}, 9 \cdot 4 \%$).
n -Butyl cyclopropanecarboxylate. 11.8 G . of pure n-butyl alcohol and 16 g . of the acid chloride gave, after standing for l hour at room temperature, 19 g . of the ester, b. p. $175^{\circ} / 759 \mathrm{~mm}$. (Found : C, 67.5 ; $\mathrm{H}, 9 \cdot 7 . \quad \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 67 \cdot 6 ; \mathrm{H}, 9 \cdot 9 \%$).
n -Amyl cyclopropanecarboxylate. $13 \cdot 2 \mathrm{G}$. of Boots synthetic n-amyl alcohol and 15 g . of the acid chloride gave, after standing for l hour at room temperature, 13 g . of the ester, b. p. $193^{\circ} / 753 \mathrm{~mm}$. Redistillation yielded the pure ester, b. p. $87^{\circ} / 17 \mathrm{~mm}$. (Found: C, $69 \cdot 1 ; \mathrm{H}, 10 \cdot 1$. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $69 \cdot 2$; H, $10 \cdot 3 \%$).
cycloPropane-1:1-dicarboxylic acid. This was prepared by condensation of ethyl sodiomalonate [from sodium, "super-dry" ethyl alcohol (by ethyl phthalate method), and dry ethyl malonate] and dry ethylene dibromide (compare Part I, $J ., 1934,337$) or preferably from ethyl sodiocyanoacetate and ethylene dibromide (compare Carpenter and Perkin, J., 1899, 75, 924; Jones and Scott, J. Amer. Chem. Soc., 1922, 44, 413). The acid is best isolated by continuous ether extraction, and after two recrystallisations from ether-light petroleum (b. p. $60-80^{\circ}$) had m. p. $136-137^{\circ}$.

Diethyl cyclopropane-1 : 1-dicarboxylate. A mixture of 19.5 g . of the acid, 28 g . of absolute ethyl alcohol, 9 g . of concentrated sulphuric acid, and 55 ml . of sodium-dried A.R. benzene was refluxed for 20 hours and then poured into excess of water. The benzene layer was separated, the aqueous phase was extracted once with ether, and the combined benzene and ether extracts washed successively with water, saturated sodium hydrogen carbonate solution, and water, dried $\left(\mathrm{MgSO}_{4}\right)$, the solvents removed at atmospheric pressure, and the residue distilled under reduced pressure. The yield of diethyl ester, b. p. $114^{\circ} / 22 \mathrm{~mm}$., was 16 g .

Di-n-propyl cyclopropane-1:1-dicarboxylate. A similar preparation, but with 42 g . of absolute n-propyl alcohol, gave 17 g . of di-n-propyl cyclopropane-1:1-dicarboxylate, b. p. $124^{\circ} / 12 \mathrm{~mm}$. (Found : $\mathrm{C}, 61.5 ; \mathrm{H}, 8.7 . \quad \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 8.5 \%$).
cycloButane-1: 1-dicarboxylic acid. The yield of acid obtained by condensation of 212 g . of trimethylene dibromide with ethyl sodiomalonate (from 46 g . of sodium, 800 ml . of absolute ethyl alcohol, and 160 g . of ethyl malonate) according to the procedure of Org . Synth., $1943,23,16$ (compare Perkin, J., 1887,51, l) can be increased from $30-34 \mathrm{~g}$. to $50-51 \mathrm{~g}$. by the use of perfectly dry materials, i.e., trimethylene dibromide and ethyl malonate dried over anhydrous calcium sulphate, and absolute ethyl alcohol dried by the ethyl phthalate method. The resulting cyclobutane-1:1-dicarboxylic acid has m. p. 158° unaffected by recrystallisation.

Dimethyl cyclobutane-1 : 1-dicarboxylate. A mixture of $21 \cdot 6 \mathrm{~g}$. of the acid, 20 g . of absolute methyl alcohol, 9 g . of concentrated sulphuric acid, and 50 ml . of sodium-dried A.R. benzene was refluxed for 22 hours and yielded, when worked up as detailed for diethyl cyclopropane-1:1-dicarboxylate, 17 g . of ester, b. p. $87^{\circ} / 8 \mathrm{~mm}$.

Diethyl cyclobutane-1:1-dicarboxylate. This ester was similarly prepared from 28 g . of absolute ethyl alcohol; yield $16 \mathrm{~g} ., \mathrm{b} . \mathrm{p} .101 \cdot 5^{\circ} / 11 \mathrm{~mm}$.

Di-n-propyl cyclobutane-1 : 1-dicarboxylate. In like manner, but from 42 g . of absolute n-propyl alcohol and with 34 hours' refluxing, 23 g . of this ester, b. p. $129^{\circ} / 13 \mathrm{~mm}$. (Found : C, 63.3; $\mathrm{H}, 8.8$. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, $63 \cdot 1 ; \mathrm{H}, 8.8 \%$), were obtained.

Di-n-butyl cyclobutane-1 : 1-dicarboxylate. A mixture of 14.4 g . of the acid, 28.2 g . of pure n-butyl alcohol, 6 g , of concentrated sulphuric acid, and 40 ml . of dry benzene was refluxed for 22 hours and gave 16 g. of the ester, b. p. $146^{\circ} / 11 \mathrm{~mm}$. (Found : C, $65 \cdot 7 ; \mathrm{H}, 9 \cdot 3$. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}$ requires C, $65 \cdot 6$; H, 9.4%).
cycloButanecarboxylic acid. The 1:1-dicarboxylic acid, m. p. 158°, was decomposed by heating above the m. p. (Org. Synth., 1943, 23, 17) and gave an 88% yield of the pure acid, b. p. $195 \cdot 5^{\circ} / 765 \mathrm{~mm}$. (compare op. cit., which gives b. p. $191 \cdot 5-193 \cdot 5^{\circ} / 740 \mathrm{~mm}$.).

Methyl cyclobutanecarboxylate. The reaction between 100 g . of redistilled thionyl chloride and 65 g . of pure cyclobutanecarboxylic acid yielded, as for the cyclopropane compound, 62 g . of the acid chloride, b. p. $136-137^{\circ} / 762 \mathrm{~mm}$.

The preparation of all the esters from this acid chloride was conducted as detailed for methyl cyclopropanecarboxylate; after the addition of the acid chloride to the appropriate alcohol cooled to 0°, the mixture was kept at room temperature for $60-90$ minutes before being poured into water, etc. Thus 38 g . of the acid chloride and 15 g . of absolute methyl alcohol afforded 30 g . of methyl cyclobutanec arboxylate, b. p. $134 \cdot 5^{\circ} / 764 \mathrm{~mm}$.

Ethyl cyclobutanecarboxylate. From 18 g . of the acid chloride and 8.0 g . of absolute ethyl alcohol, the yield of ester, b. p. $152^{\circ} / 762 \mathrm{~mm}$., was 13 g .
n-Propyl cyclobutanecarboxylate. From 22.5 g . of the acid chloride and 13.0 g . of pure n-propyl alcohol, the yield of ester, b. p. $172^{\circ} / 765 \mathrm{~mm}$., was 23 g . (Found: $\mathrm{C}, 67.5 ; \mathrm{H}, 9.9$. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, $67 \cdot 6 ; \mathrm{H}, 9 \cdot 9 \%$).
n -Butyl cyclobutanecarboxylate. From $20 \cdot 1 \mathrm{~g}$. of acid chloride and 13.8 g . of absolute n-butyl alcohol, the yield of ester, b. p. $98^{\circ} / 32 \mathrm{~mm}$., was 22 g . (Found: C, $69 \cdot 2 ; \mathrm{H}, 10 \cdot 2$. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, $69 \cdot 2$; H, $10 \cdot 3 \%$).
$\mathrm{n}-A m y l$ cyclobutanecarboxylate. From 22.0 g . of the acid chloride and 19.4 g . of Boots synthetic n-amyl alcohol, the yield of ester, b. p. $105^{\circ} / 20 \mathrm{~mm}$., was 22 g . (Found : C, $70.5 ; \mathrm{H}, 10 \cdot 8 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 70 \cdot 6 ; \mathrm{H}, 10.7 \%$).

The results of the physical measurements upon the freshly distilled compounds are collected below. The numbering of compounds in Clarendon type follows from Part XVII (this vol., p.683). Reference to

[1948]

compounds, the preparation of which is described in preceding or succeeding papers of this series, will be abbreviated to, e.g., XVII, 418.
419. cycloPropyl methyl ketone. B. p. $111^{\circ} / 757 \mathrm{~mm} . ; M 84 \cdot 11$; $n_{\mathrm{G}} \mathrm{l} \cdot 42243, n_{\mathrm{D}} \mathrm{I} \cdot 42496, n_{\mathrm{F}} 1 \cdot 43116$, $n_{G^{\prime}}{ }^{1} \cdot 43555 ; R_{\mathrm{G}} 23 \cdot 78, R_{\mathrm{D}} 23 \cdot 91, R_{\mathrm{F}} 24 \cdot 22, R_{\mathcal{G}^{\prime}} 24 \cdot 43 ; M n_{\mathrm{D}}^{20^{\circ}} 119 \cdot 86$. Densities determined: $d_{4^{0}}^{20}$ $0 \cdot 8994, d_{4^{\circ}}^{40.0^{\circ}} 0.8803, \tilde{a}_{4^{63}}^{63 \cdot 7^{\circ}} 0 \cdot 8575, d_{4^{\circ}}^{87.7^{\circ}} 0 \cdot 8332$. Apparatus E.
(These headings apply to all subsequent tables in this paper.)

t.	H.	$d^{t^{\circ}}$.	γ.	P.	t.	H.	$d_{4}^{\text {d }}$.	γ	P.
$17.9{ }^{\circ}$	14.67	0.9014	$30 \cdot 80$	219.8	$60.9{ }^{\circ}$	12.77	$0 \cdot 8602$	25.58	219.9
$21 \cdot 3$	$14 \cdot 54$	$0 \cdot 8981$	$30 \cdot 41$	219.9	87-1	$11 \cdot 67$	$0 \cdot 8338$	$22 \cdot 66$	$220 \cdot 1$
$40 \cdot 9$	$13 \cdot 67$	$0 \cdot 8794$	28.00	$220 \cdot 0$					219.9

420. cycloPropanecarboxylic acid. B. p. $97^{\circ} / 27 \mathrm{~mm} .$, m. p. $17 \cdot 5^{\circ} ; M 86 \cdot 09 ; n_{\mathrm{C}} 1 \cdot 43562, n_{\mathrm{D}} \mathrm{l} \cdot 43832$, $n_{\mathrm{F}} 1 \cdot 44448, n_{\mathrm{G}^{\prime}} 1 \cdot 44922 ; R_{\mathrm{G}} 20 \cdot 65, R_{\mathrm{D}} 20 \cdot 77, R_{\mathrm{F}} 21 \cdot 02, R_{\mathrm{G}^{\prime}} 21 \cdot 21 ; M n_{\mathrm{D}}^{20^{\circ}} 123 \cdot 82$. Densities determined : $d_{4}^{2} 0^{\circ}{ }^{\circ} \cdot 0889, d_{4^{0}}^{40 \cdot 0^{\circ}} 1 \cdot 0707, d_{4}^{60 \cdot 2^{\circ}} 1 \cdot 0514, d_{4 .}^{86 \cdot 5^{\circ}}{ }_{1 \cdot 0262}$. Apparatus E.

22.4°	13.55	1.0867	34.29	191.7	60.9°	12.31	1.0508	$30 \cdot 13$	191.9
40.1	12.95	1.0706	32.29	191.7	85.9	11.56	1.0267	27.64	192.3
								Mean	191.9

421. Methyl cyclopropanecarboxylate. B. p. $117 \cdot 5^{\circ} / 763 \mathrm{~mm}$.; $M 100 \cdot 11$; $n_{\mathrm{O}} \mathrm{I} \cdot 41637, n_{\mathrm{D}} 1 \cdot 41866$, $n_{\mathrm{F}} 1 \cdot 42424, n_{\mathrm{G}^{\prime}} 1 \cdot 42825 ; R_{\mathrm{C}} 25 \cdot 21, R_{\mathrm{D}} 25 \cdot 34, R_{\mathrm{F}} 25 \cdot 63, R_{\mathrm{G}^{\prime}} 25 \cdot 84 ; M n_{\mathrm{D}}^{20^{\circ}} 142 \cdot 03$. Densities determined:

$20 \cdot 0^{\circ}$	$13 \cdot 26$	0.9972	$30 \cdot 80$	$236 \cdot 5$	$61 \cdot 5^{\circ}$	$11 \cdot 54$	0.9530	$25 \cdot 61$	$236 \cdot 3$
$23 \cdot 1$	$13 \cdot 18$	0.9940	$30 \cdot 51$	$236 \cdot 7$	$86 \cdot 2$	10.52	0.9275	22.72	$236 \cdot 0$
$40 \cdot 9$	12.37	0.9753	$28 \cdot 10$	$236 \cdot 3$				Mean $236 \cdot 4$	

422. Ethyl cyclopropanecarboxylate. B. p. $133^{\circ} / 763 \mathrm{~mm}$.; $M 114 \cdot 14 ; n_{\mathbf{O}} 1 \cdot 41789, n_{\mathrm{D}} 1 \cdot 42076, n_{\mathrm{F}}$ 1.42573 , $n_{G^{\prime}} 1.42979 ; R_{\mathrm{G}} 29 \cdot 84, R_{\mathrm{D}} 30.02 R_{\mathrm{F}} 30 \cdot 33, R_{G^{\prime}} 30 \cdot 58 ; M n_{\mathrm{D}}^{20^{\circ}} 162 \cdot 17$. Densities determined : $d_{40^{\circ}}^{20} 0.9638, d_{4 \cdot}^{4.0} 0.9434, d_{4 \cdot}^{63 \cdot 4^{\circ}} 0.9196, d_{4 \cdot}^{88 \cdot 2^{\circ}} 0.8949$. Apparatus E.

20.9°	12.94	0.9629	$29 \cdot 02$	$275 \cdot 1$	$61 \cdot 1^{\circ}$	$11 \cdot 28$	0.9219	$24 \cdot 22$	$274 \cdot 7$
41.3	$12 \cdot 15$	0.9421	26.66	$275 \cdot 3$	85.9	10.36	0.8952	$21 \cdot 60$	274.9
								Mean $275 \cdot 0$	

423. n-Propyl cyclopropanecarboxylate. B. p. $155^{\circ} / 766 \mathrm{~mm}$.; $M 128 \cdot 27$; $n_{\mathrm{O}} 1 \cdot 42216, n_{\mathrm{D}} \mathrm{l} \cdot 42446$, $n_{\mathrm{F}} 1 \cdot 43011, n_{\mathrm{G}^{\prime}} 1 \cdot 43395 ; R_{\mathrm{G}} 34 \cdot 54, R_{\mathrm{D}} 34 \cdot 70, R_{\mathrm{F}} 35 \cdot 10, R_{\mathrm{G}^{\prime}} 35 \cdot 38 ; M n_{\mathrm{D}}^{20^{\circ}} 182 \cdot 72$. Densities determined :

19.8°	13.21	0.9443	$29 \cdot 05$	$315 \cdot 4$	$61 \cdot 2^{\circ}$	11.58	0.9044	$24 \cdot 39$	$315 \cdot 2$
$22 \cdot 7$	13.08	0.9415	28.68	$315 \cdot 2$	$85 \cdot 7$	10.68	0.8809	21.91	$315 \cdot 0$
40.7	12.34	0.9243	26.56	$315 \cdot 1$				Mean $315 \cdot 2$	

424. $\mathrm{n}-$ Butyl cyclopropanecarboxylate. B. p. $175^{\circ} / 759 \mathrm{~mm}$.; $M 142 \cdot 19 ; n_{\mathrm{C}} 1 \cdot 42620, n_{\mathrm{D}} 1 \cdot 42847, n_{\mathrm{F}}$ $1 \cdot 43404, n_{G^{\prime}} 1 \cdot 43813 ; R_{\mathrm{G}} 39 \cdot 17, R_{\mathrm{D}} 39 \cdot 36, R_{\mathrm{F}} 39 \cdot 80, R_{\mathcal{G}^{\prime}} 40 \cdot 12 ; n_{\mathrm{D}}^{20^{\circ}} 203 \cdot 12$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0.9304, d_{4^{\circ}}^{40 \cdot 0^{\circ}} 0.9136, d_{4^{6}}^{61 \cdot 6^{\circ}} 0.8944, d_{4^{8}}^{85 \cdot 6^{\circ}} 0.8714$. Apparatus E.

$25 \cdot 8^{\circ}$	$13 \cdot 16$	0.9254	28.36	$354 \cdot 6$	$62 \cdot 2^{\circ}$	$11 \cdot 82$	0.8936	$24 \cdot 60$	$354 \cdot 4$
40.7	12.58	0.9130	26.75	$354 \cdot 2$	$85 \cdot 7$	10.96	0.8713	$22 \cdot 24$	$354 \cdot 4$
								Mean $354 \cdot 4$	

425. n - Amyl cyclopropanecarboxylate. B. p. $193^{\circ} / 753 \mathrm{~mm}$. followed by $87^{\circ} / 17 \mathrm{~mm}$; $M 156 \cdot 22$; $n_{\mathrm{O}} \mathrm{l} \cdot 42976, n_{\mathrm{F}} 1 \cdot 43219, n_{\mathrm{F}} 1 \cdot 43765, n_{G^{\prime}} 1 \cdot 44174 ; R_{\mathrm{G}} 43 \cdot 74, R_{\mathrm{D}} 43 \cdot 96, R_{\mathrm{F}} 44 \cdot 45, R_{\mathrm{G}^{\prime}} 44 \cdot 80 ; \mathrm{Mn}_{\mathrm{D}}^{20^{\circ}} 223 \cdot 74$. Densities determined : $d_{4^{2} 0^{\circ}} 0.9221, d_{4^{4} \cdot 5^{\circ}} 0.9034, d_{4^{6} \cdot 4^{\circ}}^{6 .} 0.8870, d_{4^{\circ}}^{85.9^{\circ}} 0.8639$. Apparatus E.

15.6°	13.73	0.9259	29.61	393.6	61.5°	11.99	0.8861	24.74	393.2
40.5	12.84	0.9043	27.04	393.9	86.7	11.14	0.8623	22.37	394.0
								Mean 393.7	

426. Diethyl cyclopropane-1:1-dicarboxylate. B. p. $114^{\circ} / 22 \mathrm{~mm} . ; M 186 \cdot 20 ; n_{\mathrm{O}} \mathrm{l} \cdot 43078, n_{\mathrm{D}} \mathrm{l} \cdot 43310$, $n_{\mathrm{F}} 1 \cdot 43881, n_{\mathrm{G}^{\prime}} 1 \cdot 44264 ; R_{\mathrm{O}^{\circ}} 45 \cdot 38, R_{\mathrm{D}} 45 \cdot 60, R_{\mathrm{F}} 46 \cdot 12, R_{G^{\prime}} 46 \cdot 47 ; M n_{\mathrm{D}}^{20^{\circ}} 266 \cdot 84$. Densities determined :

16.2°	12.99	1.0653	32.23	416.5	60.3°	11.50	1.0219	27.37	416.8
19.9	12.88	1.0616	31.85	416.7	86.2	10.71	0.9953	24.83	417.6
41.3	12.10	1.0406	29.33	416.4				Mean 416.8	

427. Di-n-propyl cyclopropane-1 : 1-dicarboxylate. p. $124^{\circ} / 12 \mathrm{~mm} . ; M_{214.25 ;} n_{\mathrm{c}} 1 \cdot 43520$, n_{n} $1 \cdot 43751, n_{\mathrm{F}} 1 \cdot 44321, n_{G^{\prime}} \mathrm{I} \cdot 44711 ; R_{\mathrm{G}} 54 \cdot 57, R_{\mathrm{D}} 54 \cdot 82, R_{\mathrm{F}} 55 \cdot 44, R_{\mathbf{G}^{\prime}} 55 \cdot 87 ; M n_{\mathrm{D}}^{20^{\circ}} 307 \cdot 98$. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 1 \cdot 0249, d_{4^{\circ}}^{4 \cdot 5^{\circ}} 1 \cdot 0052, d_{4^{\circ}}^{60 \cdot 5^{\circ}} 0.9864, d_{4^{\circ}}^{86 \cdot 7^{\circ}} 0.9622$. Apparatus E.

18.7°	$13 \cdot 16$	1.0262	31.45	$494 \cdot 4$	$61 \cdot 5^{\circ}$	$11 \cdot 64$	0.9854	26.71	$494 \cdot 3$
40.4	12.28	1.0053	28.75	493.5	86.8	10.85	0.9621	$24 \cdot 31$	$494 \cdot 5$
									Mean $494 \cdot 2$

1808 Physical Properties and Chemical Constitution. Part XVIII.

428. Dimethyl cyclobutane-1 : 1-dicarboxylate.* B. p. $87^{\circ} / 8 \mathrm{~mm}$.; $M 172 \cdot 18$; $n_{\mathrm{O}} 1 \cdot 43920, n_{\mathrm{D}} 1 \cdot 44154$, $n_{\mathrm{F}} 1 \cdot 44079, n_{\mathrm{G}^{\prime}} 1 \cdot 45100 ; R_{\mathrm{G}} 40 \cdot 52, R_{\mathrm{D}} 40 \cdot 70, R_{\mathrm{F}} 41 \cdot 15, R_{\mathrm{G}^{\prime}} 41 \cdot 46 ; M n_{\mathrm{D}}^{20^{\circ}} 248 \cdot 20$. Densities determined : $d_{4^{\circ} 0^{\circ}}^{n^{\circ}} 1 \cdot 1182, d_{4^{\circ}}^{40.2^{\circ}}{ }_{1} \cdot 0981, d_{4^{0}}^{6.3^{\circ}} 1 \cdot 0786, d_{4^{\circ}}^{91 \cdot 9^{\circ}} 1 \cdot 0464$. Apparatus E.

t.	H.	$d_{4.0}^{t^{\circ}}$	γ.	P.	t.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
$20 \cdot 4^{\circ}$	$13 \cdot 49$	$1 \cdot 1178$	$35 \cdot 12$	$375 \cdot 0$	$60 \cdot 8^{\circ}$	$12 \cdot 12$	$1 \cdot 0781$	$30 \cdot 43$	$375 \cdot 1$
$\mathbf{4 0 \cdot 1}$	$12 \cdot 76$	$1 \cdot 09882$	$32 \cdot 62$	$374 \cdot 7$	$85 \cdot 0$	$11 \cdot 30$	$1 \cdot 0532$	$27 \cdot 72$	$375 \cdot 1$
									Mean

429. Diethyl cyclobutane-1:1-dicarboxylate. B. p. $101 \cdot 5^{\circ} / 11 \mathrm{~mm} . ; M 200 \cdot 23 ; n_{\mathrm{o}} \mathrm{l} \cdot 43364, n_{\mathrm{D}}$ $1.43590, n_{\mathrm{F}} 1.44140, n_{\mathrm{G}^{\prime}} \mathrm{I} .44539 ; R_{\mathrm{G}} 49.78, R_{\mathrm{D}} 50.01, R_{\mathrm{F}} 50.56, R_{\mathrm{G}^{\prime}} 50.96 ; M n_{\mathrm{D}}^{20^{\circ}} 287.51$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0466, d_{4^{4}}^{4 \cdot \cdot 2^{\circ}} 1 \cdot 0271, d_{40^{\circ}}^{60 \cdot 8^{\circ}} 1 \cdot 0075, d_{4^{\circ}}^{88 \cdot 0^{\circ}} 0 \cdot 9831$. Apparatus E.

$13.4{ }^{\circ}$	$13 \cdot 14$	1.0530	32-22	$453 \cdot 1$	$60 \cdot{ }^{\circ}$	11.59	1.0082	27.21	$453 \cdot 6$
18.9	12.98	$1 \cdot 0477$	31.67	$453 \cdot 4$	87•1	$10 \cdot 72$	$0 \cdot 9820$	24.52	$453 \cdot 7$
$40 \cdot 2$	$12 \cdot 33$	1.0271	$29 \cdot 49$	454.3					453.6

430. Di-n-propyl cyclobutane-1 : 1-dicarboxylate. B. p. $129^{\circ} / 13 \mathrm{~mm} . ; M 228 \cdot 28 ; n_{\mathrm{O}} 1 \cdot 43689, n_{\mathrm{D}}$ $1 \cdot 43913$, $n_{\mathrm{F}} 1 \cdot 44467, n_{G} 1 \cdot 44875 ; R_{\mathrm{G}} 59 \cdot 07, R_{\mathrm{D}} 59 \cdot 33, R_{\mathrm{F}} 59 \cdot 99, R_{G^{\prime}} 60 \cdot 47 ; M n_{\mathrm{D}}^{20^{\circ}} 328 \cdot 52$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} \mathbf{l} \cdot 0122, d_{4}^{40.9^{\circ}} 0.9937, d_{4 .}^{60 \cdot 0^{\circ}} 0.9767, d_{4^{\circ}}^{86 \cdot 7^{\circ}} 0.9527$. Apparatus E.

$25 \cdot 1^{\circ}$	12.89	1.0077	30.22	$531 \cdot 3$	$61 \cdot 3^{\circ}$	$11 \cdot 73$	0.9755	$26 \cdot 65$	$531 \cdot 7$
$40 \cdot 4$	12.38	0.9941	28.66	531.3	86.4	10.95	0.9530	24.30	531.9
								Mean 531.6	

431. Di-n-butyl cyclobutane-1:1-dicarboxylate. B. p. $146^{\circ} / 11 \mathrm{~mm} . ; \quad M 256.33 ; n_{\mathrm{O}} \mathrm{l} \cdot 43976, n_{D}$ $1 \cdot 44205, n_{\mathrm{F}} 1 \cdot 44765, n_{G^{\prime}} 1 \cdot 45163 ; R_{\mathrm{G}} 68 \cdot 18, R_{\mathrm{D}} 68 \cdot 49, R_{\mathrm{F}} 69 \cdot 24, R_{G^{\prime}} 69 \cdot 76 ; M n_{\mathrm{D}}^{20^{\circ}} 369 \cdot 65$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9905, d_{4^{\circ}}^{40 \cdot 6^{\circ}} 0.9724, d_{4^{\circ}}^{59.7^{\circ}} 0.9566, d_{4^{\circ}}^{85 \cdot 9^{\circ}} 0.9905$. Apparatus E.

23.9°	13.03	0.9871	29.96	607.5	$61 \cdot 1^{\circ}$	11.83	0.9544	$26 \cdot 20$	608.3
40.7	12.57	0.9723	28.46	608.9	$86 \cdot 2$	11.15	0.9344	$24 \cdot 26$	$609 \cdot 1$
									Mean 608.5

432. cycloButanecarboxylic acid. B. p. $195 \cdot 5^{\circ} / 772 \mathrm{~mm} . ; M 100 \cdot 11$; $n_{\mathrm{C}} 1 \cdot 44115, n_{\mathrm{D}} 1 \cdot 44355, n_{\mathrm{F}}$ $1 \cdot 44932, n_{G^{\prime}} \mathrm{I} \cdot 45337 ; R_{\mathrm{O}} 25 \cdot 02, R_{\mathrm{D}} 25 \cdot 14, R_{\mathrm{F}} 25 \cdot 42, R_{\mathrm{G}^{\prime}} 25 \cdot 62 ; M n_{\mathrm{D}}^{20^{\circ}} 144 \cdot 52$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} \mathrm{I} \cdot 0570, d_{4^{\circ}}^{40 \cdot 0^{\circ}} \mathrm{I} \cdot 0399, d_{4^{0}}^{60 \cdot 5^{\circ}} 1 \cdot 0217 . d_{4^{\circ}}^{85 \cdot 3^{\circ}} 0 \cdot 9997$. Apparatus A.

22.8°	16.93	1.0546	33.43	228.3	60.2°	$15 \cdot 47$	1.0220	29.60	228.5
28.5	$16 \cdot 66$	1.0496	32.74	$228 \cdot 2$	$86 \cdot 9$	14.34	0.9983	$26 \cdot 81$	$228 \cdot 2$
40.3	16.12	1.0396	31.38	227.8				Mean $228 \cdot 2$	

433. Methyl cyclobutanecarboxylate. B. p. $134 \cdot 5^{\circ} / 754 \mathrm{~mm}$.; $M 114 \cdot 14 ; n_{\mathrm{D}} \mathrm{l} \cdot 42354, n_{\mathrm{D}} \mathrm{l} \cdot 42596, n_{\mathrm{F}}$ 1.43111, $n_{\mathcal{G}^{\prime}} 1 \cdot 43505 ; R_{\mathrm{O}} 29 \cdot 56, R_{\mathrm{D}} 29.71, R_{\mathrm{F}} 30 \cdot 02, R_{\mathcal{Q}^{\prime}} 30 \cdot 26 ; M n_{\mathrm{D}}^{20^{\circ}} 162 \cdot 76$. Densities determined : $d_{4^{\circ}}^{20} 0.9844, d_{4}^{39 \cdot 8^{\circ}} 0.9645, d_{4}^{61.5} 0.9429, d_{4}^{86 \cdot 9^{\circ}} 0.9161$. Apparatus E.

19.3°	13.54	0.9851	31.06	273.6	61.9°	11.74	0.9425	25.77	272.9
42.3	12.43	0.9620	27.85	272.6	86.8	10.76	0.9162	22.96	$272 \cdot 7$
								Mean 273.0	

434. Ethyl cyclobutanecarboxylate. B. p. $152^{\circ} / 762 \mathrm{~mm} . ; M 128.17 ; n_{\mathrm{O}} 1.42353, n_{\mathrm{D}} 1.42581, n_{\mathrm{F}}$ 1-43103, $n_{\mathrm{G}^{\prime}} 1 \cdot 43498 ; R_{\mathrm{D}} 34 \cdot 24, R_{\mathrm{D}} 34 \cdot 41, R_{\mathrm{F}} 34 \cdot 78, R_{\mathrm{G}^{\prime}} 35 \cdot 06 ; M n_{\mathrm{D}}^{20^{\circ}} 192 \cdot 74$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9540, d_{4^{\circ}}^{40 \cdot 2^{\circ}} 0.9346, d_{4^{6}}^{60 \cdot 7^{\circ}} 0.9143, d_{4^{\circ}}^{86 \cdot 3^{\circ}} 0.8895$. Apparatus E.

$15 \cdot 1^{\circ}$	$13 \cdot 46$	0.9589	$30 \cdot 06$	$313 \cdot 0$	$61 \cdot 7^{\circ}$	$11 \cdot 52$	0.9133	$24 \cdot 50$	$312 \cdot 2$
$20 \cdot 9$	$13 \cdot 22$	0.9531	29.35	$313 \cdot 0$	$89 \cdot 1$	$10 \cdot 45$	0.8863	$21 \cdot 57$	$311 \cdot 7$
$40 \cdot 7$	12.30	0.9341	26.76	$312 \cdot 1$				Mean 312.4	

435. n-Propyl cyclobutanecarboxylate. B. p. $172^{\circ} / 765 \mathrm{~mm} . ; ~ M 142 \cdot 19 ; n_{\mathrm{O}} \mathrm{l} \cdot 42680, n_{\mathrm{D}} \mathrm{l} \cdot 42912, n_{\mathrm{F}}$ $1.43430, n_{G^{\prime}} 1.43835 ; R_{\mathrm{O}} 38 \cdot 86, R_{\mathrm{D}} 39 \cdot 06, R_{\mathrm{F}} 39 \cdot 46, R_{\mathrm{G}^{\prime}} 39 \cdot 79 ; M n_{\mathrm{D}}^{20^{\circ}} 203 \cdot 20$. Densities determined : $d_{40^{20}}^{20} 0.9389, d_{4^{2} \cdot 5^{\circ}}^{4 \cdot 9} 0.9181, d_{4^{6}}^{61 \cdot 3^{\circ}} 0.9007, d_{6^{86}}^{86} 5^{\circ} 0 \cdot 8766$. Apparatus E.

$17 \cdot 2^{\circ}$	13.43	0.9415	$29 \cdot 45$	$351 \cdot 8$	$63 \cdot 2^{\circ}$	$11 \cdot 74$	0.8980	$24 \cdot 55$	$352 \cdot 5$
$41 \cdot 4$	12.59	0.9191	26.95	352.5	$87 \cdot 6$	10.85	0.8758	$22 \cdot 13$	$352 \cdot 1$
								Mean $352 \cdot 2$	

436. n -Butyl cyclobutanecarboxylate. B. p. $98^{\circ} / 32 \mathrm{~mm}$.; $M 156.22$; $n_{\mathrm{O}} \mathrm{l} \cdot 43052, n_{\mathrm{D}} \mathrm{l} \cdot 43274, n_{\mathrm{F}}$ $1 \cdot 43809, n_{G^{\prime}} 1 \cdot 44200 ; R_{\mathrm{D}} 43 \cdot 46, R_{\mathrm{D}} 43 \cdot 66, R_{\mathrm{F}} 44 \cdot 13, R_{\mathbf{G}^{\prime}} 44 \cdot 48 ; M n_{\mathrm{D}}^{200^{\circ}} 223 \cdot 82$. Desnities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 9294, d_{4}^{42 \cdot 7^{\circ}} 0 \cdot 9093, d_{4^{\circ}}^{62 \cdot 3^{\circ}} 0 \cdot 8924, d_{\mathbf{4}^{8} \cdot 2^{\circ}} 0 \cdot 8732$. Apparatus E.

$15 \cdot 4^{\circ}$	$13 \cdot 74$	0.9334	29.87	$391 \cdot 3$	$61 \cdot 9^{\circ}$	$12 \cdot 10$	0.8928	$25 \cdot 16$	$391 \cdot 9$
$18 \cdot 3$	$13 \cdot 61$	0.9309	29.51	391.1	$86 \cdot 3$	11.30	0.8722	22.95	$392 \cdot 0$
41.6	12.82	0.9101	$27 \cdot 17$	391.9				Mean $391 \cdot 6$	

* The results for this new preparation supersede those in Part I, $J ., 1934,340$.

43\%. n-Amyl cyclobutanecarboxylate. B. p. $105^{\circ} / 20 \mathrm{~mm} . ; \quad M 170.24 ; n_{\mathrm{O}} \mathrm{l} \cdot 43362, n_{\mathrm{D}} \mathrm{l} \cdot 43600, n_{\mathrm{F}}$ $1.44131, n_{G^{\prime}} 1 \cdot 44533 ; R_{\mathrm{C}} 48 \cdot 06, R_{\mathrm{D}} 48 \cdot 30, R_{\mathrm{F}} 48 \cdot 80, R_{G^{\prime}} 49 \cdot 19 ; n_{\mathrm{D}}^{20^{\circ}} 244 \cdot 46$. Densities determined : $d_{4}^{200^{\circ}} 0.9217, d_{4^{1}}^{41 \cdot 6^{\circ}} 0.9031, d_{40^{6}}^{61 \cdot 3^{\circ}} 0 \cdot 8863, d_{4}^{85 \cdot 7^{\circ}} 0 \cdot 8652$. Apparatus E.

t.	H.	$d_{4}^{t^{\circ}}$	γ.	P.	t.	H.	$d_{4^{\circ} \cdot}^{\circ}$	γ.	P.
$16 \cdot 1^{\circ}$	$13 \cdot 85$	0.9251	$29 \cdot 84$	$430 \cdot 1$	$61 \cdot 7^{\circ}$	$12 \cdot 24$	$0 \cdot 8860$	$25 \cdot 26$	$430 \cdot 7$
$41 \cdot 3$	12.91	0.9034	$27 \cdot 16$	$430 \cdot 2$	$86 \cdot 8$	$11 \cdot 43$	$0 \cdot 8643$	$23 \cdot 01$	$431 \cdot 4$
								Mean $430 \cdot 6$	

The authors' thanks are due to Sharples Chemicals Inc., of Philadelphia, U.S.A., for a gift of cyclopropyl methyl ketone.

Woolwich Polytechnic, London, S.E. 18.
[Received, December 4th, 1947.]

